Green Engineering Conference

BIOFACADES

Next Generation Building Envelope Systems
Made Available by QNRF NPRP Grant # 7-1406-2-507
MEET THE PRESENTER

Arch. Sara Zaina

Qualifications

: Urban Planners/ Architects

Job title

: Research Assistants

email

: sara.zaina@qu.edu.qa; najeebaak@yahoo.com

Acknowledgement

“This research/publication was made possible by a National Priority Research Program NPRP award [NPRP-07-1406-2-507] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the author(s).”
‘Biofacades’, commonly referred to as ‘Vertical Garden’ represents controlled vegetated surfaces (using its thermal properties) in a building.

Main elements of Biofacades:

- Plants & Planting media
- Structural support for plant attachment to the building with irrigation system
BIOFACADES BENEFITS

| Reduce Urban Heat Island Effect | 1) Promotes natural cooling
| Improved Exterior Air Quality | 2) Reduced ambient temperature
| | 3) Shading Surfaces
| Improved Exterior Air Quality | 1) Captures airborne pollutants and atmospheric deposition
| | 2) Filter noxious gases and particulate matter
| Aesthetic Improvement | 1) Creates visual interest
| | 2) Hides unsightly features
| | 3) Increases property value
| | 4) Provides interesting elements
| Improved Energy Efficiency | 1) Traps a layer of air within the plant mass
| | 2) Limits heat movement
| | 3) Reduces ambient temperature
| | 4) Creates buffer against wind
| | 5) Interior applications reduce energy required for heating/cooling

CASE STUDIES

In context to Qatar, Doha

Figure 04 – Ezdan Mall, Doha,
Source: Physical Site Visit

Figure 05 – Katara, Doha, Qatar
Source: Supplier Brochure

Figure 06 – Qatar Handball Association, Doha, Qatar; Source:
Supplier Brochure

Figure 07 – Banana Island Resort, Doha, Qatar
Source: Supplier Brochure

Figure 08 – Business Park, Doha, Qatar
Source: Supplier Brochure
BIOFACADES PROJECT
- Project studies the impact of the next generation facade on both indoor and outdoor environment
- 4 exterior Bio-façades walls on the ground level of the building with adjacent bare walls used as control facades
RESEARCH AIM

The design, development and use of innovative Bio-green facades:

- The evaluation of the effects of plants on urban microclimate
- The monitoring of the thermal performance in the hot climate of Qatar
- Creating Sustainable, Healthy Liveable Urban Environment & buildings in Qatar
- Provides well being for the individual, community and Society
Phase 1:

Selection of test-bed location
- Orientation to sunlight
- Wind direction
- Amount of shade received

Biofacades installation
- POD system
 - Plant selection
 - Nursery visits
 - Preliminary studies
 - Plant properties
 - Soil type
 - Size of plants

Instrument installation
- Weather station
- Data loggers
- Sensors

Thermal conditions at the bare and vegetated facades:
- Surface temperature at exterior and interior facades
- Air temperature at exterior and interior facades
- Relative humidity at exterior and interior facades
- Heat flux through the walls
- Solar radiation at the exterior walls
- Soil temperature of the planters
- Soil moisture content of the planters
Phase 2:

Biofacades monitoring
- Weekly basis of all walls

Data collection and analysis
- HOBOware software
- Data sheets
 - Watering records
 - Climatic conditions
 - Plant variations
- Monthly analysis charts

Development of design guidelines
- GSAS
- QCS
INSTALLATION PROCESS

Figure 03 – Installation of BioFaçades
Source: Photos taken on 15 Jan 2016

Figure 04 – Installation of instruments
Source: Photos taken on 31 Aug 2016

Figure 13 – Installation of micro-weather station and interior data loggers; Source: Photos taken on 01 Sept 2016
Figure 17. Plants Selected for Experimental Study
Figure 18. Arrangement of Plants in POD’s (October)
Phase 1: 2016

Figure 05. South-West: Wall1

Figure 06. North-East: Wall3

Figure 07. North-West: Wall2

Figure 08. South-East: Wall4
<table>
<thead>
<tr>
<th>January 2017</th>
<th>February 2017</th>
<th>March 2017</th>
<th>April 2017</th>
<th>May 2017</th>
<th>June 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 05. South-West: Wall1</td>
<td>Figure 06. North-East: Wall3</td>
<td>Figure 07. North-West: Wall2</td>
<td>Figure 08. South-East: Wall4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Phase 2: 2017
Monthly analysis charts developed using evaluation scoring systems for the plants

- Experimental results showed reduction in the facade exterior surface temperature and heat flux through the façade
- Biofacades reduce approx. 20% of energy consumption
- Change in ambient air temperature and relative humidity
- Most suitable plants in Qatar include Asparagus Ferns, Aloe Vera, Pennistum Rubrum, Green and Verigated Yucca
- Amount of required water consumption for different plant species
- The amount of maintenance required for the bio-green facades

![Wall 3 (North East) Plant Performance](figure26.png)

Legend:
1- Dead 2- Dying 3- Not Good 4- Fair 5- Good 6- Excellent

- Cyprus
- Portulaca Grandiflora
- Green Yacca
- Thymus Vulgaris
- Lampranthus Aureus
- Asparagus Ferns
- Wedelia Trilobata
- Aloe Vera
- Sweda Vermiculata
- Sessiuvium Potulacastrum
- Pennistum Rubrum
- Setcresea Purpurea

Figure 26. Wall3 Plant Performance
OUTCOMES

Enhance sustainability, reduce Urban Heat Island effect, improve exterior air quality, aesthetic improvement, and energy efficiency.

Formulate design guidelines:
- Using plants in buildings to improve their energy performance
- To be implemented in the industry

Recommendations:
- Usage of suitable plant species in hot arid regions

Use research results & guidelines as a platform to define facade greenery chapter in the GSAS and QCS.